

 Navigation

 	
 index

 	
 next |

 	django-formwizard 1.0 documentation

django-formwizard Documentation

Warning

The 1.0+ releases are incompatible with all previous releases (<=0.6) of
django-formwizard!

If you want to use the old version, please install django-formwizard==0.6
(version 0.6 is the last version with the old api)

django-formwizard is a reusable app to work with multi-page forms. Besides
normal Forms, it supports FormSets, ModelForms and ModelFormSets.

Note

This app was originally developed as an external library for Django but
the code made it to Django itself. Beginning with release 1.4 of Django,
the form-wizard will be available in Django directly
(django.contrib.formtools.wizard).

This code is a backport of the django.contrib.formtools.wizard code!

Until the 1.4 release, django-formwizard will be maintained to let
Django 1.3 users work with the new form-wizard.

To install django-formwizard, simply run

pip install django-formwizard

The source is available on
GitHub [http://github.com/stephrdev/django-formwizard].

If you are interested in contributing, just fork the repository on GitHub and
commit your changes. Don’t forget to send a pull request.

Contents:

	Getting started
	How it works

	Usage

	Advanced WizardView methods

	Providing initial data for the forms

	Handling files

	Conditionally view/skip specific steps

	How to work with ModelForm and ModelFormSet

	Usage of NamedUrlWizardView

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Stephan Jaekel.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	feature-backport

 Navigation

 	
 index

 	
 previous |

 	django-formwizard 1.0 documentation

Getting started

This documentation shows the basic functionality of django-formwizard.

Before we start, make sure that you installed django-formwizard:

pip install django-formwizard

django-formwizard provides an “form wizard” application that splits forms
across multiple Web pages. It maintains state in one of the backends so that
the full server-side processing can be delayed until the submission of the
final form.

You might want to use this if you have a lengthy form that would be too
unwieldy for display on a single page. The first page might ask the user for
core information, the second page might ask for less important information,
etc.

The term “wizard”, in this context, is explained on Wikipedia [http://en.wikipedia.org/wiki/Wizard_%28software%29].

How it works

Here’s the basic workflow for how a user would use a wizard:

	The user visits the first page of the wizard, fills in the form and
submits it.

	The server validates the data. If it’s invalid, the form is displayed
again, with error messages. If it’s valid, the server saves the current
state of the wizard in the backend and redirects to the next step.

	Step 1 and 2 repeat, for every subsequent form in the wizard.

	Once the user has submitted all the forms and all the data has been
validated, the wizard processes the data – saving it to the database,
sending an email, or whatever the application needs to do.

Usage

This application handles as much machinery for you as possible. Generally,
you just have to do these things:

	Define a number of Form classes – one per
wizard page.

	Create a WizardView subclass that specifies what to do once
all of your forms have been submitted and validated. This also lets
you override some of the wizard’s behavior.

	Create some templates that render the forms. You can define a single,
generic template to handle every one of the forms, or you can define a
specific template for each form.

	Add formwizard to your INSTALLED_APPS list in your settings file.

	Point your URLconf at your WizardView
as_view() method.

Defining Form classes

The first step in creating a form wizard is to create the
Form classes. These classes can live anywhere in your
codebase, but convention is to put them in a file called forms.py in
your application.

For example, let’s write a “contact form” wizard, where the first page’s form
collects the sender’s email address and subject, and the second page collects
the message itself. Here’s what the forms.py might look like:

from django import forms

class ContactForm1(forms.Form):
 subject = forms.CharField(max_length=100)
 sender = forms.EmailField()

class ContactForm2(forms.Form):
 message = forms.CharField(widget=forms.Textarea)

Note

In order to use FileField in any form, see the
section Handling files below to learn more about
what to do.

Creating a WizardView class

The next step is to create a formwizard.views.WizardView subclass.
You can also use the SessionWizardView or CookieWizardView
class which preselects the wizard storage backend.

Note

To use the SessionWizardView follow the instructions
in the sessions documentation of Django on how to enable sessions.

We will use the SessionWizardView in all examples but is is completly
fine to use the CookieWizardView instead. As with your
Form classes, this WizardView class can live
anywhere in your codebase, but convention is to put it in views.py.

The only requirement on this subclass is that it implement a
done() method.

	
WizardView.done(form_list)

	This method specifies what should happen when the data for every form is
submitted and validated. This method is passed a list of validated
Form instances.

In this simplistic example, rather than performing any database operation,
the method simply renders a template of the validated data:

from django.shortcuts import render_to_response
from formwizard.views import SessionWizardView

class ContactWizard(SessionWizardView):
 def done(self, form_list, **kwargs):
 return render_to_response('done.html', {
 'form_data': [form.cleaned_data for form in form_list],
 })

Note that this method will be called via POST, so it really ought to
be a good Web citizen and redirect after processing the data. Here’s
another example:

from django.http import HttpResponseRedirect
from formwizard.views import SessionWizardView

class ContactWizard(SessionWizardView):
 def done(self, form_list, **kwargs):
 do_something_with_the_form_data(form_list)
 return HttpResponseRedirect('/page-to-redirect-to-when-done/')

See the section Advanced WizardView methods
below to learn about more WizardView hooks.

Creating templates for the forms

Next, you’ll need to create a template that renders the wizard’s forms. By
default, every form uses a template called
formwizard/wizard_form.html. You can change this template name
by overriding either the template_name attribute or the
get_template_names() method, which is documented below.
This hook also allows you to use a different template for each form.

This template expects a wizard object that has various items attached to
it:

	form – The Form instance for the current
step (either empty or with errors).

	steps – A helper object to access the various steps related data:

	step0 – The current step (zero-based).

	step1 – The current step (one-based).

	count – The total number of steps.

	first – The first step.

	last – The last step.

	current – The current (or first) step.

	next – The next step.

	prev – The previous step.

	index – The index of the current step.

	all – A list of all steps of the wizard.

You can supply additional context variables by using the
get_context_data() method of your WizardView
subclass.

Here’s a full example template:

{% extends "base.html" %}

{% block content %}
<p>Step {{ wizard.steps.current }} of {{ wizard.steps.count }}</p>
<form action="." method="post">{% csrf_token %}
<table>
{{ wizard.management_form }}
{% if wizard.form.forms %}
 {{ wizard.form.management_form }}
 {% for form in wizard.form.forms %}
 {{ form }}
 {% endfor %}
{% else %}
 {{ wizard.form }}
{% endif %}
{% if wizard.steps.prev %}
<button name="wizard_prev_step" value="{{ wizard.steps.first }}">{% trans "first step" %}</button>
<button name="wizard_prev_step" value="{{ wizard.steps.prev }}">{% trans "prev step" %}</button>
{% endif %}
</table>
<input type="submit">
</form>
{% endblock %}

Note

Note that {{ wizard.management_form }} must be used for
the wizard to work properly.

Hooking the wizard into a URLconf

Finally, we need to specify which forms to use in the wizard, and then
deploy the new WizardView object a URL in the urls.py. The
wizard’s as_view() method takes a list of your
Form classes as an argument during instantiation:

from django.conf.urls.defaults import patterns

from myapp.forms import ContactForm1, ContactForm2
from myapp.views import ContactWizard

urlpatterns = patterns('',
 (r'^contact/$', ContactWizard.as_view([ContactForm1, ContactForm2])),
)

Advanced WizardView methods

	
class WizardView

	Aside from the done() method, WizardView offers a few
advanced method hooks that let you customize how your wizard works.

Some of these methods take an argument step, which is a zero-based
counter as string representing the current step of the wizard. (E.g., the
first form is '0' and the second form is '1')

	
WizardView.get_form_prefix(step)

	Given the step, returns a form prefix to use. By default, this simply uses
the step itself. For more, see the form prefix documentation.

	
WizardView.process_step(form)

	Hook for modifying the wizard’s internal state, given a fully validated
Form object. The Form is guaranteed to have clean,
valid data.

Note that this method is called every time a page is rendered for all
submitted steps.

The default implementation:

def process_step(self, form):
 return self.get_form_step_data(form)

	
WizardView.get_form_initial(step)

	Returns a dictionary which will be passed to the form for step as
initial. If no initial data was provied while initializing the
form wizard, a empty dictionary should be returned.

The default implementation:

def get_form_initial(self, step):
 return self.initial_dict.get(step, {})

	
WizardView.get_form_instance(step)

	Returns a object which will be passed to the form for step as
instance. If no instance object was provied while initializing
the form wizard, None be returned.

The default implementation:

def get_form_instance(self, step):
 return self.instance_dict.get(step, None)

	
WizardView.get_form_kwargs(step)

	Returns a dictionary which will be used as the keyword arguments when
instantiating the form instance on given step.

The default implementation:

def get_form_kwargs(self, step):
 return {}

	
WizardView.get_context_data(form, **kwargs)

	Returns the template context for a step. You can overwrite this method
to add more data for all or some steps. This method returns a dictionary
containing the rendered form step.

The default template context variables are:

	Any extra data the storage backend has stored

	form – form instance of the current step

	wizard – the wizard instance itself

Example to add extra variables for a specific step:

def get_context_data(self, form, **kwargs):
 context = super(MyWizard, self).get_context_data(form, **kwargs)
 if self.steps.current == 'my_step_name':
 context.update({'another_var': True})
 return context

	
WizardView.get_wizard_name()

	This method can be used to change the wizard’s internal name.

Default implementation:

def get_wizard_name(self):
 return normalize_name(self.__class__.__name__)

	
WizardView.get_prefix()

	This method returns a prefix for the storage backends. These backends use
the prefix to fetch the correct data for the wizard. (Multiple wizards
could save their data in one session)

You can change this method to make the wizard data prefix more unique to,
e.g. have multiple instances of one wizard in one session.

Default implementation:

def get_prefix(self):
 return self.wizard_name

	
WizardView.get_form(step=None, data=None, files=None)

	This method constructs the form for a given step. If no step is
defined, the current step will be determined automatically.
The method gets three arguments:

	step – The step for which the form instance should be generated.

	data – Gets passed to the form’s data argument

	files – Gets passed to the form’s files argument

You can override this method to add extra arguments to the form instance.

Example code to add a user attribute to the form on step 2:

def get_form(self, step=None, data=None, files=None):
 form = super(MyWizard, self).get_form(step, data, files)
 if step == '1':
 form.user = self.request.user
 return form

	
WizardView.process_step(form)

	This method gives you a way to post-process the form data before the data
gets stored within the storage backend. By default it just passed the
form.data dictionary. You should not manipulate the data here but you can
use the data to do some extra work if needed (e.g. set storage extra data).

Default implementation:

def process_step(self, form):
 return self.get_form_step_data(form)

	
WizardView.process_step_files(form)

	This method gives you a way to post-process the form files before the
files gets stored within the storage backend. By default it just passed
the form.files dictionary. You should not manipulate the data here
but you can use the data to do some extra work if needed (e.g. set storage
extra data).

Default implementation:

def process_step_files(self, form):
 return self.get_form_step_files(form)

	
WizardView.render_revalidation_failure(step, form, **kwargs)

	When the wizard thinks, all steps passed it revalidates all forms with the
data from the backend storage.

If any of the forms don’t validate correctly, this method gets called.
This method expects two arguments, step and form.

The default implementation resets the current step to the first failing
form and redirects the user to the invalid form.

Default implementation:

def render_revalidation_failure(self, step, form, **kwargs):
 self.storage.current_step = step
 return self.render(form, **kwargs)

	
WizardView.get_form_step_data(form)

	This method fetches the form data from and returns the dictionary. You
can use this method to manipulate the values before the data gets stored
in the storage backend.

Default implementation:

def get_form_step_data(self, form):
 return form.data

	
WizardView.get_form_step_files(form)

	This method returns the form files. You can use this method to manipulate
the files before the data gets stored in the storage backend.

Default implementation:

def get_form_step_files(self, form):
 return form.files

	
WizardView.render(form, **kwargs)

	This method gets called after the get or post request was handled. You can
hook in this method to, e.g. change the type of http response.

Default implementation:

def render(self, form=None, **kwargs):
 form = form or self.get_form()
 context = self.get_context_data(form, **kwargs)
 return self.render_to_response(context)

Providing initial data for the forms

	
WizardView.initial_dict

	Initial data for a wizard’s Form objects can be
provided using the optional initial_dict keyword argument.
This argument should be a dictionary mapping the steps to dictionaries
containing the initial data for each step. The dictionary of initial data
will be passed along to the constructor of the step’s
Form:

>>> from myapp.forms import ContactForm1, ContactForm2
>>> from myapp.views import ContactWizard
>>> initial = {
... '0': {'subject': 'Hello', 'sender': 'user@example.com'},
... '1': {'message': 'Hi there!'}
... }
>>> wiz = ContactWizard.as_view([ContactForm1, ContactForm2], initial_dict=initial)
>>> form1 = wiz.get_form('0')
>>> form2 = wiz.get_form('1')
>>> form1.initial
{'sender': 'user@example.com', 'subject': 'Hello'}
>>> form2.initial
{'message': 'Hi there!'}

The initial_dict can also take a list of dictionaries for a specific
step if the step is a FormSet.

Handling files

To handle FileField within any step form of the wizard,
you have to add a file_storage to your WizardView subclass.

This storage will temporarilyy store the uploaded files for the wizard. The
file_storage attribute should be a
Storage subclass.

Warning

Please remember to take care of removing old files as the
WizardView won’t remove any files, whether the wizard gets
finished correctly or not.

Conditionally view/skip specific steps

	
WizardView.condition_dict

	

The as_view() accepts a condition_dict argument. You
can pass a dictionary of boolean values or callables. The key should match
the steps name (e.g. ‘0’, ‘1’).

If the value of a specific step is callable it will be called with the
WizardView instance as the only argument. If the return value is
true, the step’s form will be used.

This example provides a contact form including a condition. The condition is
used to show a message form only if a checkbox in the first step was checked.

The steps are defined in a forms.py:

from django import forms

class ContactForm1(forms.Form):
 subject = forms.CharField(max_length=100)
 sender = forms.EmailField()
 leave_message = forms.BooleanField(required=False)

class ContactForm2(forms.Form):
 message = forms.CharField(widget=forms.Textarea)

We define our wizard in a views.py:

from django.shortcuts import render_to_response
from formwizard.views import SessionWizardView

def show_message_form_condition(wizard):
 # try to get the cleaned data of step 1
 cleaned_data = wizard.get_cleaned_data_for_step('0') or {}
 # check if the field ``leave_message`` was checked.
 return cleaned_data.get('leave_message', True)

class ContactWizard(SessionWizardView):

 def done(self, form_list, **kwargs):
 return render_to_response('done.html', {
 'form_data': [form.cleaned_data for form in form_list],
 })

We need to add the ContactWizard to our urls.py file:

from django.conf.urls.defaults import pattern

from myapp.forms import ContactForm1, ContactForm2
from myapp.views import ContactWizard, show_message_form_condition

contact_forms = [ContactForm1, ContactForm2]

urlpatterns = patterns('',
 (r'^contact/$', ContactWizard.as_view(contact_forms,
 condition_dict={'1': show_message_form_condition}
)),
)

As you can see, we defined a show_message_form_condition next to our
WizardView subclass and added a condition_dict argument to the
as_view() method. The key refers to the second wizard step
(because of the zero based step index).

How to work with ModelForm and ModelFormSet

The WizardView supports ModelForm and
ModelFormSet. Additionally to the initial_dict,
the as_view() method takes a instance_dict argument
with a list of instances for the ModelForm and ModelFormSet.

Usage of NamedUrlWizardView

	
class NamedUrlWizardView

	

There is a WizardView subclass which adds named-urls support to the
wizard. By doing this, you can have single urls for every step.

To use the named urls, you have to change the urls.py.

Below you will see an example of a contact wizard with two steps, step 1 with
“contactdata” as its name and step 2 with “leavemessage” as its name.

Additionally you have to pass two more arguments to the
as_view() method:

	url_name – the name of the url (as provided in the urls.py)

	done_step_name – the name in the url for the done step

Example code for the changed urls.py file:

from django.conf.urls.defaults import url, patterns

from myapp.forms import ContactForm1, ContactForm2
from myapp.views import ContactWizard

named_contact_forms = (
 ('contactdata', ContactForm1),
 ('leavemessage', ContactForm2),
)

contact_wizard = ContactWizard.as_view(named_contact_forms,
 url_name='contact_step', done_step_name='finished')

urlpatterns = patterns('',
 url(r'^contact/(?P<step>.+)/$', contact_wizard, name='contact_step'),
 url(r'^contact/$', contact_wizard, name='contact'),
)

 Copyright 2011, Stephan Jaekel.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	feature-backport

 Navigation

 	
 index

 	django-formwizard 1.0 documentation

Index

 C
 | D
 | G
 | I
 | N
 | P
 | R
 | W

C

 	

 	condition_dict (WizardView attribute)

D

 	

 	done() (WizardView method)

G

 	

 	get_context_data() (WizardView method)

 	get_form() (WizardView method)

 	get_form_initial() (WizardView method)

 	get_form_instance() (WizardView method)

 	get_form_kwargs() (WizardView method)

 	

 	get_form_prefix() (WizardView method)

 	get_form_step_data() (WizardView method)

 	get_form_step_files() (WizardView method)

 	get_prefix() (WizardView method)

 	get_wizard_name() (WizardView method)

I

 	

 	initial_dict (WizardView attribute)

N

 	

 	NamedUrlWizardView (built-in class)

P

 	

 	process_step() (WizardView method), [1]

 	

 	process_step_files() (WizardView method)

R

 	

 	render() (WizardView method)

 	

 	render_revalidation_failure() (WizardView method)

W

 	

 	WizardView (built-in class)

 Copyright 2011, Stephan Jaekel.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	feature-backport

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		django-formwizard 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Stephan Jaekel.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		feature-backport

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

